

Ultrabond 4CC is a high performance epoxy adhesive for anchoring and doweling DESCRIPTION applications in both Cracked and Un-Cracked concrete.

4CC

PROPERTIES **TESTED IN ACCORDANCE TO ICC-ES AC-308** Refer to ICC-ES ESR-3218 Evaluation Report

GENERAL USES and APPLICATIONS

- For anchoring threaded rods, bolts and fasteners into grout filled masonry, solid brick or either cracked or uncracked concrete
- Anchoring rebar dowels and smooth dowels into pavement/concrete
- Suitable for long term sustained loads and seismic bracing
- Can be used dry, water-saturated, water-filled and submerged applications with no load reductions
- * Airport runways and taxi-way expansions, stadium seating, pallet racking
- Concrete traffic barriers to concrete bridge decks

COLOR				
Part A	Opaque			
Part B	Gray			
Mixed	Concrete Gray			
Mix Ratio	1:1			

ADVANTAGES and FEATURES Ultrabond 4CC is a non-sag, high strength, moisture insensitive epoxy gel anchoring system. It is 100% solids with zero VOC content

PACKAGING Not available in Bulk sizes

Package Size-Cartridge only	22 oz.
Part #	A22-4CC
Manual Dispensing Tool	TM22-HD
Pneumatic Dispensing Tool	TA22HD-N
Case Quantity	12
Pallet Quantity cases/units	48 / 576
Recommended Mixer Nozzle	T5814C

AVAILABILITY ATC Ultrabond products are available through select distributors who can provide you with all your construction needs. Please contact ATC at (800) 892-1880 for a distributor near you.

WEBSITE www.ATC.ws

SHELF LIFE / STORAGE 18 month shelf life when stored in unopened containers in dry conditions. Store between 40°F and 95°F.

Independent AST	M C88	31 Te	echnical Data
Properties		ASTM	70°F
Working Time	minutes		15
Full Cure Time	hours		24
Compressive Yield Strength - psi	7 day	D695	10,344
Compressive Modulus – psi		D695	665,251
Tensile Strength psi		D638	4,355
Tensile Elongation - %		D638	7.56
Bond Strength – psi	2 day	C882	3,330
Bond Strength – psi	14 day	C882	3,330
Consistency or Viscosity		C881	Non-sag
Heat Deflection Temp		D648	143°F
Water Absorption - %		D570	0.036
Linear Coefficient of Shrinkage %		D2566	0.003
Volatile Organic Compounds (VOC)	mixed		0

STANDARDS and APPROVALS

Tested to ACI 318 Appendix D ICC-ES AC-308 Evaluation Report ESR-3218 (Category 1 performance rating) Meets 2009 IBC requirements ASTM C881 Type I & IV, Grade 3, Class C D.O.T Approvals: pending Canada, Ontario MTO-DSM #9.30.25 FBC Florida Building Code FL#14373 Fire Resistance Performance: Tested BS476

LEED: Certificate is available upon request

Adhesives Technology Corp.

APPLICATION TEMPERATURE Substrate and ambient air temperature between 70°F and 110°F

CONDITION PRODUCT Product should be conditioned to at least 70°F prior to application

COVERAGE See Installation Instructions for Estimating and Usage Guide for anchoring/doweling.

CHEMICAL RESISTANCE A Chemical Resistance Chart for our Ultrabond, Miraclebond and Crackbond Epoxy products is available upon request. Contact a Sales Representative for details.

LIMITATIONS & WARNINGS

- ***** Do not thin with solvents, as this will prevent cure
- Warm weather epoxy. Application temperature between 70°F and 110°F

SPECIFICATION Anchor adhesive shall be a two component, 1:1 ratio system supplied in a pre-measured side by side cartridge and dispensed through a static mixing nozzle supplied by the manufacturer. The adhesive must have a minimum heat deflection temperature of 143°F per ASTM D648. The adhesive must have a minimum ultimate tension load value of 13,476 lbs when tested using 1/2-inch threaded rod in 9/16 diameter hole at a minimum embedment depth of 4-1/2" in 4,000 psi concrete. The shelf life must be a minimum of 18 months. The adhesive shall be Adhesives Technology Corporation Ultrabond 4CC that has been tested in accordance to ICC-ES AC-308.

INSTALLATION INSTRUCTIONS For complete Installation Instructions and Technical data for Ultrabond 4CC refer to our Website, <u>www.atc.ws</u> or call ATC for more information at 1-800-892-1880.

SURFACE PREPARATION All surfaces must be sound and clean before product application. All dust, dirt, oil, wax, grease or any other contaminant must be removed with solvent or other means. Unsound and loose concrete must also be removed by grinding or sanding. Smooth surface must be roughened with sand paper or wire brush before application. Use pressurized air to blow away dust and dirt.

CLEAN UP Clean tools and equipment with solvent such as acetone, MEK or toluene before product hardens.

SAFETY Please refer to the MSDS for Ultrabond 4CC published on our Website, <u>www.atc.ws</u> or call ATC for more information at 1-800-892-1880.

WARRANTY All warranties of the product listed herein, in the corresponding ATC catalog, and in any other current literature, expressed or implied, including warranties of merchantability and fitness for a particular purpose are specifically and expressly excluded with the following exception: At its sole discretion, ATC will repair or replace any product which it considers to be defective in material or workmanship, excepting normal wear and tear within sixty (60) days from the date of purchase from ATC. ATC shall not be liable for any injury, loss or damage, direct, indirect, incidental or consequential or arising out of misuse of, negligence, accident or inability to use any ATC product.

Adhesives Technology Corp.

INDEX OF ESTIMATING CHARTS & LOAD TABLES

I.	ALLOWABLE STRESS DESIGN - LOAD TABLES (Compliant to 2000 IBC)
a)	Threaded rod; Tension Loads; Allowable & Ultimate; 2,000 psi & 4000 psi Concrete 4
b)	Threaded rod; Shear Loads; Allowable & Ultimate; 2,000 psi & 4000 psi Concrete
c)	Allowable Steel Strength for Threaded Rod5
d)	Rebar; Allowable & Ultimate Tension Loads; 2,000 & 4,000 psi Concrete
e)	Allowable Steel Strength for Rebar 6
f)	Combination Tension & Shear Load Reduction Factors
g)	Edge Distance & Spacing Distance Load Factors Summary Charts
II.	STRENGTH DESIGN - PERFORMANCE VALUES (Compliant to 2007 IBC)
a)	Concrete Breakout Design Information
b)	Steel Design Information for Threaded Rod 8
c)	Brush Specifications
d)	Adhesive Anchor Bond Strength Design Information9
e)	Typical Allowable Stress Design Table and Calculations (2,500 – 8,000 PSI Uncracked Concrete) 10
f)	Illustrative Procedure to Calculate Allowable Stress Design Tension Values11
III.	INSTALLATION INSTRUCTIONS Visit our Website at <u>www.ATC.ws</u> or call 1-800-892-1880
a)	Hole Preparation and Cartridge Set-Up
b)	Anchoring and Doweling Procedures

- c) Usage & Estimating Guide for quantity requirements
- IV. CHEMICAL RESISTANCE CHART Call our Sales Support Team at 1-800-892-1880

Manufactured In The U.S.A.

Ultrabond 4CC Cure Schedule							
Tempe	rature	Working	Full Cure				
°C	°F	Time (minutes)	Time (hours)				
43°C	110°F	9	24				
32°C	90°F	9	24				
20°C	70°F	15	24				

Adhesives Technology Corp.

ALLOWABLE STRESS DESIGN PERFORMANCE VALUES

ALLOWABLE TENSION LOADS FOR THREADED ROD INSTALLED IN CONCRETE BASED ON BOND^{1,2,3}

Threaded	Base	d on Bond Stre	ngth	2000 psi Nor Conc	rmal Weight crete	4000 psi Normal Weight Concrete		
Diameter (in.)	Hole Diameter (in.)	Minimum Embedment Depth (in.)	Max Torque After cure (ftIbs.)	Ultimate Tension Load (Ibs.)	Allowable Tension Load (lbs.)	Ultimate Tension Load (Ibs.)	Allowable Tension Load (Ibs.)	
3/8	7/16	3-3/8 4-1/2	9	5,060 6,465	1,265 1,616	8,396 10,490	2,092 2,622	
1/2	9/16	4-1/2 6 7 1/2	16	10,484 12,392 N/A	3,004 3,098 N/A	13,476 19,166 20,572	3,369 4,791 5,140	
5/8	11/16 or 3/4	5-5/8 7-1/2 9 3/8	47	14,634 20,182 N/A	3,659 5,046 N/A	20,880 27,939 32,249	5,220 6,985 8,060	
3/4	13/16 or 7/8	6-3/4 9 11 1/4	90	18,966 25,988 N/A	4,742 6,497 N/A	29,019 43,812 47,927	7,255 10, 057 11,980	
1	1-1/16 or 1-1/8	9 12 15	170	43,804 45,351 N/A	10,951 11,338 N/A	53,531 64,022 82,547	11,209 15,923 20,630	

¹Use the lower of either the load based on bond, or allowable steel strength value, for design load.

²Linear interpolation may be used for intermediate spacing and edge distances

³Allowable Loads based on 2000 IBC Allowable Stress Design. (ICC-ES AC-58)

ALLOWABLE SHEAR LOADS FOR THREADED ROD INSTALLED IN CONCRETE BASED ON BOND^{1,2}

Threaded Hole Minimum		Max Torque	2000 psi N Co	ormal Weight ncrete	4000 psi Normal Weight Concrete		
Diameter (in.)	Diameter (in.)	Embedment Depth (in.)	After cure (ftIbs.)	Ultimate Shear Load (Ibs.)	Allowable Shear Load (lbs.)	Ultimate Shear Load (Ibs.)	Allowable Shear Load (Ibs.)
3/8	7/16	3-3/8	9	6,227	1,557	6,227	1,557
1/2	9/16	4-1/2	16	12,016	3,004	12,016	3,004
5/8	11/16 or 3/4	5-5/8	47	17,547	4,387	17,547	4,387
3/4	13/16 or 7/8	6-3/4	90	24,918	6,230	24,918	6,230
1	1-1/16 or 1-1/8	9	170	43,648	10,912	43,648	10,912

¹Use the lower of either the load based on bond, or allowable steel strength value, for design load.

²Allowable Loads based on 2000 IBC Allowable Stress Design. (ICC-ES AC-58)

Adhesives Technology Corp.

ALLOWABLE THREADED ROD STEEL STRENGTH¹

Threaded	l Base	Allowable Tension I ed on Steel Strengtl	oads n Design	Allowable Shear loads Based on Steel Strength Design			
Rod Size (in.)	ASTM A307 GRADE C (Ibs.)	ASTM A193 GRADE B7 (lbs.)	304/316 SS (lbs.)	ASTM A307 GRADE C (lbs.)	ASTM A193 GRADE B7 (lbs.)	304/316 SS (lbs.)	
3/8	2,080	4,340	3,645	1,040	2,170	1,995	
1/2	3,730	7,780	6,480	1,870	3,895	3,585	
5/8	5,870	12,230	10,125	2,940	6,125	5,635	
3/4	8,490	17,690	12,390	4,250	8,855	7,440	
7/8	11,337	24,060	16,865	5,781	12,105	10,170	
1	15,180	31,620	22,030	7,590	15,810	13,285	
1 1/4	23,137	49,101	34,425	11,797	26,080	17,735	

¹Use the lower of either the load based on bond, or allowable steel strength value, for design load.

	Hole	Minimum	2,000 psi	Concrete	4,000 psi Concrete		
Rebar Size	Diameter (in.)	Embedment Depth (in.)	Ultimate Tension Load (lbs.)	Allowable Tension Load (lbs.)	Ultimate Tension Load (Ibs.)	Allowable Tension Load (lbs.)	
#3	1/2	3-3/8 4-1/2	7,480	1,870	8,090 10,488	2,022 2,622	
#4	5/8	4-1/2 6	 11,235	 2,808	14,471 20,396	3,617 5,099	
#5	3/4	5-5/8 7-1/2	 18,108	 4,527	21,273 31,863	5,318 7,965	
#6	7/8	6-3/4 9	29,338	 7,334	27,677 47,879	6,919 11,969	
#7	1-1/8	7-7/8 10-1/2			43,905 52,046	10,976 13,011	
#8	1-1/4	9 12	48,000	 12,000	55,676 77,358	13,919 19,339	
#9	1-3/8	10-1/8 13-1/2			62,443 71,959	15,610 17,989	
#10	1-1/2	11-1/4 15			70,165 78 545	17,541 19.636	

ALLOWABLE LOADS FOR REBAR INSTALLED IN CONCRETE BASED ON BOND^{1,2,3}

¹Use the lower of either the load based on bond, or allowable steel strength value, for design load.

²Allowable Loads based on 2000 IBC Allowable Stress Design. (ICC-ES AC-58)

Manufactured In The U.S.A.

³SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

Adhesives Technology Corp.

	ALLOWADLE REDAR STELL STRENGTH							
Rebar	Allowable St	eel Strength	Ultimate Tensile and Yield Strength Grade 60 Rebar					
Size	Tension Load (Ibs.)	Shear Loads (lbs.)	Minimum Yield Strength	Minimum Ultimate Tensile Strength				
#3	2,650	1,700	6,600	9,900				
#4	4,710	3,060	12,000	18,000				
#5	7,365	4,740	18,600	27,900				
#6	10,605	6,730	26,400	39,600				
#7	14,430	9,180	36,000	54,000				
#8	18,850	12,085	47,400	71,100				
#9	23,856	15,307	60,000	90,000				
#10	30,410	18,898	76,200	114,300				

ALLOWARLE REBAR STEEL STRENGTH¹

¹Use the lower of either the load based on bond, or allowable steel strength value, for design load.

COMBINATION LOADS TENSION and SHEAR REDUCTION CALCULATIONS

Allowable loads for anchors under both tension and shear loading at the same time (combination loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combination loading conditions.

$$\left(\begin{array}{c}\underline{Na}\\Ns\end{array}\right) + \left(\begin{array}{c}\underline{Va}\\Vs\end{array}\right) \leq 1$$

Distance From Edge of Concrete

1.25 x Anchor Embedment Minimum Edge Distance - Tension

0.50 x Anchor Embedment

1.25 x Anchor Embedment

0.30 x Anchor Embedment

Critical Edge Distance – Tension

Critical Edge Distance - Shear

Minimum Edge Distance - Shear

Na = Applied Service Tension Load

Va = Applied Service Shear Load

Ns = Allowable Tension Load

Vs = Allowable Shear Load

EDGE DISTANCE LOAD FACTORS SUMMARY^{1,2}

SPACING DISTANCE LOAD FACTORS SUMMARY^{1,2}

Load Factor
100% Tension Load
75% Tension Load
100% Shear Load
30% Shear Load

1. Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2. Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

Adhesives Technology Corp.

STRENGTH DESIGN PERFORMANCE VALUES

CONCRETE BREAKOUT DESIGN INFORMATION^{1,2}

			Threaded Rod Diameter d(inch)						
CHARACTERISTIC	SYMBOL	UNITS	3/8	1/2	5/8	3/4	7/8	1	1 1/4
Effectiveness factor for uncracked concrete	K _{c,uncr}		24	24	24	24	24	24	24
Effectiveness factor for Cracked concrete	K _{c,cr}		17	17	17	17	17	17	17
Minimum Concrete Thickness ²	h_{min}	in.	$h_{\rm ef}$ + 1 ¹ / ₄ " $h_{\rm ef}$ + 2d ₀						
Anchor embedment depth - Minimum	$h_{{ m ef},{ m min}}$	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
Anchor embedment depth – Maximum	$h_{ m ef,max}$	in.	3 ³ / ₈	4 ¹ / ₂	5 ⁵ / ₈	6 ³ / ₄	7 ⁷ / ₈	9	11 ¼
Minimum Spacing	S _{min}	in.	¹⁵ / ₁₆	1	2 ¹ / ₂	6	3 ¹ / ₂	4	5
Minimum Edge Distance	C _{min}	in.	¹⁵ / ₁₆	1	2 ¹ / ₂	6	3 ¹ / ₂	4	5
Critical Edge Distance	C _{ac}	in.	See Section 4.1.10 of the ESR-3218 Report						
Strength reduction factor for Tension, concrete failure mode ¹	Ø	Cond. B	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Strength reduction factor for Shear, concrete failure mode ¹	Ø	Cond. B	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N.

¹ The tabulated value of Ø applies when the load combinations of Section 1605.2.1 of the IBC, Section 1612.2.1 of the UBC, ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4© for Condition B are met. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of Ø must be determined in accordance with ACI 318 D.4.5 for Condition B. ² d_o represents the nominal drill hole diameter.

Manufactured In The U.S.A.

Adhesives Technology Corp.

STEEL DESIGN INFORMATION FOR THREADED ROD¹

Characteristic				Anchor Nominal Rod Diameter (d)						
		Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/4"
Threaded rod effective cross-sectional										
	area	Ase	Inch ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
36	Strength reduction factor for tension, steel failure mode. ¹	Φ		0.75	0.75	0.75	0.75	0.75	0.75	0.75
TM teel A:	Strength reduction factor for shear, steel failure mode. ¹	Φ		0.65	0.65	0.65	0.65	0.65	0.65	0.65
AS ⁻ on S	Nominal steel strength in tension	N _{sa}	lb	4,500	8,230	13,110	19,400	26,780	35,130	56,210
Carb	Nominal steel strength in shear	V _{sa}	lb	2,250	4,940	7,870	11,640	16,070	21,080	33,730
	Reduction factor for seismic shear	av,seis		0.70	0.70	0.70	0.70	0.70	0.70	0.70
3 B7	Strength reduction factor for tension, steel failure mode. ¹	Φ		0.75	0.75	0.75	0.75	0.75	0.75	0.75
EM el A190	Strength reduction factor for shear, steel failure mode. ¹	Φ		0.65	0.65	0.65	0.65	0.65	0.65	0.65
AS ⁻ Ste	Nominal steel strength in tension	N _{sa}	lb	9,690	17,740	28,250	41,810	57,710	75,710	121,140
arbon	Nominal steel strength in shear	V _{sa}	lb	4,845	10,640	16,950	25,090	34,630	45,430	72,680
ő	Reduction factor for seismic shear	av,seis		0.70	0.70	0.70	0.70	0.70	0.70	0.70
593	Strength reduction factor for tension, steel failure mode. ¹	Φ		0.65	0.65	0.65	0.65	0.65	0.65	0.65
ASTM sss Steel F5	Strength reduction factor for shear, steel failure mode. ¹	Φ		0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Nominal steel strength in tension	N _{sa}	lb	5,810	10,640	16,950	25,090	34,630	45,430	72,680
tainle	Nominal steel strength in shear	V _{sa}	lb	2,905	6,390	10,170	15,050	20,780	27,260	43,610
S	Reduction factor for seismic shear	av,seis		0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch=25.4mm, 1 lbf=4.45N.

¹ The value of ϕ will apply when the load combinations of Section 1605.2.1 of the IBC, section 1612.2.1 of the UBC, or ACI 318 section 9.2 are used as set forth in ACI D 4.4. If the load combinations of Section 1901.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D 4.5.

ANCHOR INSTALLATION

BRUSH SPECIFICATIONS

Part #	(d) Anchor	(d _r) Rebar	(do) Drill bit	(d <i>brush</i> Φ) Brush Diamatar (in)	(d <i>brush</i>) Minimum brush	
	Diameter (in.)		Diameter (in.)	Diameter (m.)	diameter (in)	
HB038	3/8	# 3	7/16	5/8	0.563	
HB012	1/2	♦	9/16	3/4	0.675	
HB058	5/8	# 5	3/4	1	0.900	
HB034	3/4	#6	7/8	1-1/4	1.125	
HB078	7/8	•	1	1-1/2	1.350	
HB010	1	#7	1-1/8	1-5/8	1.463	
HB125	1-1/4	•	1-3/8	1-3/4	1.575	

For SI: 1 inch= 25.4mm \diamond Available with lead time.

Adhesives Technology Corp.

ADHESIVE ANCHOR BOND STRENGTH DESIGN INFORMATION1,2,3,4,5,6

				Nominal Rod Diameter (d)						
CHARACTERISTICS		Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/4"
Anchor Embedment Depth (minimum)		$h_{ m ef,min}$	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	5
Anchor Embedment Depth (maximum)		$h_{ m ef,max}$	in.	3 3/8	4 1/2	5 5/8	6 3/4	7 7/8	9	11 1/4
Lemp Concr	erature Range A ^{2,4,5} Bond Strength—Uncracked ete	$ au_{k,uncr}$	psi	1,620	1,620	1,620	1,620	1,620	1,620	1,620
Temp Concr	erature Range A ^{2,4,5} Bond Strength—Cracked ete	τ _{k,cr}	psi	665	785	785	785	785	785	785
Temp Concr	erature Range B 3.4.5 Bond Strength—Uncracked ete	$ au_{k,\mathit{uncr}}$	psi	1,245	1,245	1,245	1,245	1,245	1,245	1,245
Temp Concr	erature Range B 3.4.5 Bond Strength—Cracked ete	τ _{k,cr}	psi	510	605	605	605	605	605	605
Continuous Inspection	Dry Concrete Strength Reduction Factor	$\pmb{\Phi}_{dry,ci}$		0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Saturated Concrete Strength Reduction Factor	$\pmb{\Phi}_{sat,ci}$		0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Water Filled Holes Strength Reduction Factor	$\pmb{\Phi}_{wf,ci}$		0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Submerged Concrete Strength Reduction Factor	$oldsymbol{\Phi}_{ ext{sub,ci}}$		0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Dry Concrete Strength Reduction Factor	$oldsymbol{\Phi}_{dry,ci}$		0.55	0.55	0.55	0.55	0.45	0.45	0.45
Periodic Inspection	Saturated Concrete Strength Reduction Factor	$\pmb{\Phi}_{sat,ci}$		0.55	0.55	0.55	0.55	0.45	0.45	0.45
	Water Filled Holes Strength Reduction Factor	Ф _{wf,ci}		0.55	0.55	0.55	0.55	0.45	0.45	0.45
	Submerged Concrete Strength Reduction Factor	Ф _{sub,ci}		0.55	0.55	0.55	0.55	0.45	0.45	0.45
Reduction factor for seismic tension		$\Phi_{N,seis}$					0.80			

For SI: 1 inch=25.4mm, 1 lbf=4.45N. 1 ft-lbf = 1.356 N-M 1 psi = 0.006895 MPa.

¹ Bond strength values correspond to concrete compressive strength range 2,500 to 8,500 psi.

² Temperature Range A: Maximum short term temperature of 110°F and Maximum long term temperature of 70°F

³ Temperature Range B: Maximum short term temperature of 110°F and Maximum long term temperature of 110°F

⁴ Short term elevated concrete temperatures are those that occur over brief interval, e.g., as a result of diurnal cycling.

Long term concrete temperatures are roughly constant over significant periods of time.

⁵ For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 5% FOR Temperature Range A and by 36% for Temperature Range B.

⁶ For structures assigned to IBC or IRC Seismic Design Category C, D, E or F, or UBC Seismic Zone 2B, 3 or 4, bond strength values must be multiplied by av,seis

Adhesives Technology Corp.

TYPICAL ALLOWABLE STRESS DESIGN CALCULATION, ASD, USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD INSTALLED IN f'c = 2,500 PSI – 8,000 PSI UNCRACKED CONCRETE WITH ULTRABOND 4CC ADHESIVE SYSTEM¹

Embedment Depth, $h_{ m ef}$ (in) (min.max)	*Characteristic Bond Strength $ au_{ ext{uncr}}$ (psi)	Controlling Failure Mode	Allowable Tension Load (lbs) 2500 psi 8000 psi
2 3/8	1.620	Bond	1,684
3-3/8	1.620	Steel	2,280
2 3/4	1.620	Concrete	2,403
4-1/2	1.620	Steel	4,171
3 1/8	1.620	Concrete	2,911
5-5/8	1.620	Steel	6,643
3 1/2	1.620	Concrete	3,451
6-3/4	1.620	Concrete	9,242
3-1/2	1.620	Concrete	3,451
7-7/8	1.620	Bond	10,663
4	1.620	Concrete	4,216
9	1.620	Bond	13,927
5	1.620	Concrete	5,892
11-1/4	1.620	Concrete	19,887
	Embedment Depth, <i>h</i> et (in) (min.max) 2 3/8 3 3/8 2 3/4 4 -1/2 3 1/8 5 -5/8 3 1/2 6 -3/4 6 -3/4 3 -1/2 7 -7/8 4 9 5 5 11 - 1/4	Embedment Depth, h_{et} (in) (min.max)*Characteristic Bond Strength2 3/8 \mathcal{T}_{uncr} (psi)2 3/81.6203 3/81.6202 3/41.6204.1/21.6203 1/81.6205-5/81.6203 1/21.6206 -3/41.6203 -1/21.6207 -7/81.62091.62051.62011-1/41.620	Embedment Depth, $h_{et}(in) (min.max)$ *Characteristic Bond Strength $T_{uncr} (psi)$ Controlling Failure Mode2 3/81.620Bond3 3/81.620Steel2 3/41.620Concrete4 .1/21.620Concrete3 1/81.620Concrete3 1/81.620Steel3 1/21.620Steel3 1/21.620Concrete6 .3/41.620Concrete3 .1/21.620Concrete3 .1/21.620Concrete3 .1/21.620Concrete7 .7/81.620Bond41.620Concrete91.620Bond51.620Concrete1.1/41.620Concrete

¹ To Achieve the values in this table all condition listed below have to be met. This table is an example based on the conditions set forth below.

For SI: 1 inch= 25.4mm, 1lbf= 4.45N, 1ft-lbf= 1.356N-M, 1 psi=0.006895 MPa

This table was developed based on the following conditions:

1 Single anchor with static tension only, A36 threaded rod

2 Vertical downward installation direction

3 Inspection regimen = Periodic

4 Installation temperature = 70° F to 110° F

5 Long term temperature = 70° F 6 Short term temperature = 110° F

7 Dry hole condition (carbide drilled hole)

8 Embedment = h_{ef} (min/max for each diameter)

9 Concrete determined to remain uncracked for the life of the anchorage

10 Load combinations from ACI 318 Section 9.2 (no seismic loading)

11 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L

12 Calculation of weighted average for $_ = 0.3^{+}1.2 + 0.7^{+}1.6 = 1.48$

Manufactured In The U.S.A.

Adhesives Technology Corp.

4CC

Illustrative Procedure to Calculate Allowable Stress Design Tension Values: ATC Ultrabond 4CC, 1/2" anchor diameter, embedment depth of 4-1/2" assuming the conditions in Table above (Page 10).

Procedure to calculate allowable tension load for Strength Design:
Example: 1/2" diameter anchor with embedment depth of 4-1/2" installed in 4,000 psi concrete
1.Calculate steel strength – tension (A36 steel) ΦN_{sa} = 0.75 * 8,230 = 6,173 lbs
2. Calculate concrete breakout strength – tension $\Phi N_b = (\Phi A_{NC}/A_{NCo})^* k_{uncr}^* \sqrt{f_c}^* h_{ef}^{1.5} = 0.65^* 24^* \sqrt{2,500} * 4 - 1/2^{1.5} = 7,446 \text{ lbs}_{per ACI 218 D5.2}$
Normalize load for 4,000 psi concrete 7,446 * $\sqrt{\frac{4,000}{2,500}}$ = 9,418 lbs
3.Calculate bond strength – tension
$\Phi^* d^* \pi^* h_{ef}^* \tau_{k,uncr} = 0.55 * 1/2 * 3.1415 * 4-1/2 * 1,620 = 6,298 \text{ lbs}$
4. Determine load combination & conversion factor – Assume 30% dead load & 70% live load using load combination $\alpha = 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48$
5. Controlling strength is 6,173 lbs (steel) – lowest load value amongst bond, concrete and steel controlling modes. Divide by the load combination conversion factor, 1.48, to obtain allowable tension load.
6,173 / 1.48 = 4,171 lbs (steel)

Manufactured In The U.S.A.

Adhesives Technology Corp.